Primeros dos años y medio del Laboratorio de Iones y Átomos Fríos. - armado, estado y proyección -

Christian Schmiegelow Departamento e Instituto de Física, UBA-CONICET

Laboratorio de Iones y Átomos Fríos

Departamento de Física, Universidad de Buenos Aires Instituto de Física de Buenos Aires, CONICET

Fundadores

Juan Pablo Paz

Miguel Larotonda

Augusto Roncaglia

Christian Schmiegelow

Objetivo: armar un laboratorio par hacer investigación en física cuántica fundamental y sus aplicaciones

Esquema de la charla

Proyectos

Luz Estructurada Nano Crióstatos Información cuántica Relojes Ópticos

Armado del LIAF Infraestructura

Avance

Experimento Átomos Experimento Iones

Presupuesto

Luz estructurada - ¿Qué?

ondas planas...naaa → ecuación paraxial de ondas

haces Gussianos

particulardades/aplicaciones momento angular orbital

comunicaciones cuánticas

Laquerre- y Hermite-Gauss

Experimental results excitation along the beam profile

Schmiegelow et. al., Nat. Comm. 7, 12998 (2016)

Experimental Setup

Orbital Angular Momentum of Light who got the party started?

PHYSICAL REVIEW A

VOLUME 45, NUMBER 11 pg. 8185

1 JUNE 1992

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

a Laguerre-Gauss beam...

 $\mathbf{A} = \mathbf{x} u(x, y, z) e^{-ikz}$

$$u_{pl}(r,\phi,z) = \frac{C}{(1+z^2/z_R^2)^{1/2}} \left[\frac{r\sqrt{2}}{w(z)} \right]^l L_p^l \left[\frac{2r^2}{w^2(z)} \right] \\ \times \exp\left[\frac{-r^2}{w^2(z)} \right] \exp\frac{-ikr^2z}{2(z^2+z_R^2)} \exp(-il\phi) \\ \times \exp\left[i(2p+l+1)\tan^{-1}\frac{z}{z_R} \right],$$

... has spin and **orbital** angular momentum.

$$\mathbf{M} = \epsilon_0 \mathbf{r} \times \langle \mathbf{E} \times \mathbf{B} \rangle$$

$$M_{z} = \frac{l}{\omega} |u|^{2} + \frac{\sigma_{z}r}{2\omega} \frac{\partial |u|^{2}}{\partial r}$$

Reglas de selección y momento angular orbital

Schmiegelow et. al., Nat. Comm. 7, 12998 (2016)

Luz estructurada - ¿Qué?

haces vectoriales

<u>escalar,</u> uniformemente polarizado

radialmente polarizado

radialmente polarizado

todos los haces son vectoriales!

haz enfocándose

haz linealmente polarizado en *x* en el foco

Novotny et al. PRL86,5251 (2001)

ej: foco subdifracción

R.Dorn, S.Quabis, G.Leuchs PRL91,233901 (2003)

Luz estructurada - ¿Porqué?

espectrocopía con trancisiones de alto orden

observación de campos longitudinales

entrelazamiento de momento angular interno y externo

intercambio de fermiones

Nano Crióstatos

idea - enfriamiento simático de nanopartículas

iones atómicos + nanoparticulas cargadas en una trampa de Paul

enfriamiento láser de iones

nano partícula aislada y con CM a mK

diseño de la trampa problema:carga mása muy distintas solucinón:trampa bifrecuencia

Tesis Lic.

preguntas abiertas

termodinámica del crióstato - enfriamiendo del centro de masa y del cuerpo de la nanopartícula

y porqué? crióstatos = nueva física

nano óptica nano máquinas optomecánica levitada

characteristic scale $0.2 \mu m$

spin dependent

caused by an ac Stark shift 7 shi	ft
light	
	<u>ift</u> Phus. Bev. Lett. 116, 033002 (2016)

phase stable optical forces optical electrical kicks

Phys. Rev. Lett. 116, 033002 (2016)

Maquinas térmicas con iones

arXiv:1808.00390

Termodinámica en Cadenas de Iones

C.Cormick, C.T.Schmiegelow PRA 94, 053406 (2016).

 $A_{noise} [2\pi \times kHz]$

Relojes Óptico-Atómicos

Relojes Óptico-Atómicos

¿Porqué?

- por que podemos ;-)
- redefinición del segundo
- gavimetría cronométrica
- testeos de físcia fundamental

LIMF armado

FINF plano

LIAF infraestructura 2016

- Instalación AC para laboratorios
- Colocación nuevos pisos laboratorios
- Nueva instalación eléctrica laboratorios
- Pintura laboratorios
- Puesta en valor ventanales
- Compra mesas ópticas

- nueva práctica <u>en Laboratorio 5</u>

las señales difieren en ~2% para cada polarización

Patricio Grinberg

Patricio Grinberg

optimizacion del piso de ruido -empezamos en 4e-4

-*luchamos contra* --vibraciones ambiente --turbulencia --soportes mecánicos --derivas térmicas --frencuencia del láser

- estamos en 5e-5

LIMF iones atrapados

Láseres Lockeo Pound-Drever-Hall

Cavidades Fabry-Perot

Láseres Lockeo Pound-Drever-Hall

Marcelo Luda Martín Drechsler

PRL 119, 150503 (2017)

2016

Martín Drechsler **Doctorado**

Noelia Fernandez **Licenciatura**

Ulises López **Laboratorio 6y7**

Luis Biaus **Laboratorio 6y7**

Matías Cveczilberg **Licenciatura**

Martín Drechsler **Doctorado**

Matías Cveczilberg **Licenciatura**

Diego Espejo **Labo 6y7**

Lucas Martin **Labo 6y7**

Christian Reartes **Labo 6y7**

Julian Ruffinelli **Labo 6y7**

Martín Drechsler **Docto<u>rado</u>**

Nicolás Nuñez Barreto **Doctorado**

Patricio

Grinberg

Investigador

Patricio Ulises Grinberg López Investigador Licenciatura

Lautaro Filgueira **Pasante**

Leila Prelat **Labo 6y7**

Facundo Rost Labo 6y7

Fernando del Rio **Labo 6y7**